AntimonyCombinations
Release 0.0.1

Nov 25, 2019

Contents

1 Combinations 1
2 HypothesisExtension 7

Index 9

CHAPTER 1

Combinations

class antimony_combinations.Combinations (mutually_exclusive_reactions:
List[Tuple[AnyStr]] = [], directory: Op-
tional[str] = None)
Builds combinations of SBML model using antimony

Create every combination of core hypothesis and extension hypotheses and creates SBML models using anti-
mony from the tellurium package.

Combinations is designed to be subclassed. The necessary user input is given by overriding core functions
and providing hypothesis extensions.

The following methods must be implemented (see below for an example):
* core__reactions ()
* core__parameters ()
e core__variables ()
However the following methods are optional:
e core__functions()
* core__events ()
e core__units ()

Each of these methods should return a valid antimony string, since these strings are used to build up a full
antimony model.

Extension hypotheses are added by adding methods to your subclass that begin with extension_hypothesis__.
Any method that begins with extension_hypothesis__ will be picked up and used to combinatorially build sbml
models.

Any extension_hypothesis__ method should return an instance of the HypothesisExtension class, which
is merely a container for some needed information.

https://tellurium.readthedocs.io/en/latest/antimony.html

AntimonyCombinations, Release 0.0.1

Note: Notice the double underscore after extension_hypothesis

Extension Hypotheses can operate in either additive or replace mode, depending on how the models should be
combined. additive is simpler. An extension hypothesis is additive when your reaction doesn’t override another,
or make another reaction superflous. Examples of such instances might be when adding a mass action reaction

to a preexisting set of mass action reactions.

replace mode on the other hand should be used when your reaction should be used instead of another reaction.

Examples:
1 | class MyCombModel (Combinations) :
2
3 # no __init___ is necessary as we use the __init___ from parent class
4
5 def core_ functions(self):
6 return ''' '"!'
7
8 def core_ variables (self):
9 return '''
10 compartment Cell;
1 var A in Cell;
12 var pA in Cell;
13 var B in Cell;
14 var pB in Cell;
15 var C in Cell;
16 var pC in Cell;
17
18 const S in Cell
19 ree
20
21 def core_ reactions(self):
2 return '''
23 R1f: A —> pA; k1fxAxS;
24 R2f: B —-> pB; k2f«BxA;
25 R3f: C —> pC; k3f*xCxB;
26 ree
27
28 def core_ parameters(self):
29 return '''
30 k1f = 0.1;
31 k2f = 0.1;
2 k3f = 0.1;
33
34 k2b = 0.1;
35 k3b = 0.1;
36 VmaxB = 0.1;
37 kmB = 0.1;
38 VmaxA = 0.1;
39 kmA = 0.1;
40 k4 = 0.1;
41
42 S = ;
43 A = 10;
44 pA = 0;
45 B = 10;
46 pB = 0;

(continues on next page)

Chapter 1. Combinations

AntimonyCombinations, Release 0.0.1

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

(continued from previous page)

def

def

def

def

def

def

def

core__units(self):
return None # Not needed for now

core__events (self):
return None # No events needed

extension_hypothesis__additivel (self):
return HypothesisExtension (
name='AdditiveReactionl',
reaction='pB -> B',
rate_law='k2b » pB',
mode="'additive',
to_replace=None, # not needed for additive mode

extension_hypothesis__additive2 (self):
return HypothesisExtension (
name='AdditiveReaction2"',
reaction='pC -> C',
rate_law='k3b * C',
mode="'additive',
to_replace=None, # not needed for additive mode

extension_hypothesis__replace_reaction(self):
return HypothesisExtension (
name='ReplaceReaction',
reaction='pB -> B',
rate_law='VmaxB x pB / (kmB + pB)"',
mode="'replace',
to_replace='R2f', # name of reaction we want to replace

extension_hypothesis__ feedbackl (self) :
return HypothesisExtension (
name="'Feedbackl"',
reaction="'pA -> A',
rate_law='VmaxA x pA / (kmA + pA)',
mode="'additive',
to_replace=None, # name of reaction we want to replace

extension_hypothesis__ feedback?2 (self):
return HypothesisExtension (
name="'Feedback2"',
reaction="'pA -> A',
rate_law='k4 x pA', # mass action variant
mode="'additive',
to_replace=None, # name of reaction we want to replace

Now that we have built a Combinations subclass we can use it as follows:

AntimonyCombinations, Release 0.0.1

>>> project_root = os.path.dirname(file)

>>> ¢ = MyCombModel (mutually_exclusive_reactions=[

>>> ('Feedbackl', 'Feedback2')

>>>], directory=project_root # optionally specify project root
>>>)

MyCombModel behaves like an iterator, though it doesn’t store all model topologies on the outset but builds
models of the fly as the topology attribute is incremented. Topology always starts on model 0, the core model
that doesn’t have additional hypothesis extensions.

>>> print (c)
MyCombModel (topology=0)

The complete set of model topologies is enumerated by the topology attribute. The __len__ method is set to the
size of this set, accounting for mutually exclusive topologies, which is a mechanism for reducing the topology
space.

>>> print (len(c))
24

You can pick out any of these topologies using the selection operator

>>> print (c[4])
MyCombModel (topology=4)

To see which topologies correspond to which hypothesis extensions we can use ant imony_combinations.
list_topologies (), which returns a pandas.DataFrame.

>>> c.list_topolgies()
Topology

ModelID

0 Null
1 additivel
2 additive?2
3 feedbackl
4 feedback?2
5 replace_reaction
6 additivel___additive?2
7 additivel_ feedbackl
8 additivel__ feedback?2
9 additivel__replace_reaction
10 additive2__ feedbackl
11 additive2__ feedback?2
12 additive2__replace_reaction
13 feedbackl___replace_reaction
14 feedback2___replace_reaction
15 additivel__additive2_ feedbackl
16 additivel___additive2__ feedback2
17 additivel__additive2__replace_reaction
18 additivel__feedbackl__replace_reaction
19 additivel__ feedback2__replace_reaction
20 additive2__feedbackl__replace_reaction
21 additive2__feedback2__replace_reaction
22 additivel___additive2__feedbackl__replace_reaction
23 additivel___additive2__ feedback2__replace_reaction

You can extract all topologies into a list using the antimony_combinations.Combinations.
to_list () method.

4 Chapter 1. Combinations

AntimonyCombinations, Release 0.0.1

>>> print (c.to_list () [:4])
[MyCombModel (topology=0),
MyCombModel (topology=1),
MyCombModel (topology=2)
()

14
MyCombModel (topology=3)]

You can iterate over the set of topologies

>>> for i in c[:3]:

>>> ... print (i)
MyCombModel (topology=0)
MyCombModel (topology=1)
MyCombModel (topology=2)

Or use the items method, which is similar to dict.items().

>>> for i, model in c.items () [:3]:
>>> ... print (i, model)

0 MyCombModel (topology=0)

1 MyCombModel (topology=1)

2 MyCombModel (topology=2)

Selecting a single model, we can create an antimony string

>>> first_model = c[0]
>>> print (first_model.to_antimony ())
model MyCombModelTopologyO
compartment Cell;
var A in Cell;
var pA in Cell;
var B in Cell;
var pB in Cell;
var C in Cell;
var pC in Cell;
const S in Cell
R1f: A —> pA; k1fxAxS;
R2f: B —> pB; k2f*«B*A;
R3f: C —> pC; k3f«CxB;
klf =
k2f =
k3f =
s =1
A =1

.1;
.1
.1;

’

o O O

end

or a tellurium model

>>> rr = first_model.to_tellurium()
>>> print (rr)
<roadrunner.RoadRunner () {

'this' : 0x555a52c8cb90

(continues on next page)

AntimonyCombinations, Release 0.0.1

(continued from previous page)

'modelLoaded' : true

'modelName’

'1ibSBMLVersion' : LibSBML Version: 5.17.2
'jacobianStepSize' : 1le-05
'conservedMoietyAnalysis' : false
'simulateOptions'

< roadrunner.SimulateOptions ()
{
'this' : 0x555a5309cd00,
'reset' : O,
'structuredResult' : O,
'copyResult' : 1,
'steps' : 50,
'start' : O,
'duration' : 5
}>r
'integrator'
< roadrunner.Integrator () >
name: cvode
settings:
relative_tolerance: 0.000001
absolute_tolerance: 0.000000000001
stiff: true
maximum_bdf order: 5
maximum_adams_order: 12
maximum_num_steps: 20000
maximum_time_step: 0
minimum_time_step: 0
initial_time_step: 0
multiple_steps: false
variable_step_size: false

}>
>>> print (rr.simulate (0, 10, 11))
time, [A], [pA], [B], [pBI], [C], [pC]

[[0, 10, 0, 10, 0, 10, 0],
[1, 9.04837, 0.951626, 3.86113, 6.13887, 5.27257, 4.72743]7,
[2, 8.18731, 1.81269, 1.63214, 8.36786, 4.07751, 5.92249],
[3, 7.40818, 2.59182, 0.748842, 9.25116, 3.64313, 6.35687],
[4, 6.7032, 3.2968, 0.370018, 9.62998, 3.45361, 6.54639],
[5, 6.06531, 3.93469, 0.195519, 9.80448, 3.3609, 6.6391],
[6, 5.48812, 4.51188, 0.109779, 9.89022, 3.31158, 6.68842],
[7, 4.96585, 5.03415, 0.0651185, 9.93488, 3.2835, ©6.7165],
[8, 4.49329, 5.50671, 0.0405951, 9.9594, 3.26657, 6.73343],
[9, 4.0657, 5.9343, 0.0264712, 9.97353, 3.25584, 6.7441¢6],
[10, 3.67879, 6.32121, 0.0179781, 9.98202, 3.24872, 6.75128]]

Or an interface to copasi, via pycotools3

>>> c.to_copasi ()

Model (name=NoName, time_unit=s, volume_unit=1, quantity_unit=mol)

Which could be used to configure parameter estimations. Currently, support for parameter estimation configu-
ration has in COPASI not been included but this is planned for the near future.

6 Chapter 1. Combinations

https://pycotools3.readthedocs.io/en/latest/

CHAPTER 2

HypothesisExtension

class antimony_combinations.HypothesisExtension (name, reaction, rate_law,
mode="additive’, to_replace=None)
Data class for storing information about a hypothesis extension. For usage see Combinations.

AntimonyCombinations, Release 0.0.1

8 Chapter 2. HypothesisExtension

Index

C

Combinations (class in antimony_combinations), |

H

HypothesisExtension (class in anti-
mony_combinations), 7

	Combinations
	HypothesisExtension
	Index

